Phospholipid scramblase 1 amplifies anaphylactic reactions in vivo

نویسندگان

  • Asma Kassas-Guediri
  • Julie Coudrat
  • Emeline Pacreau
  • Pierre Launay
  • Renato C. Monteiro
  • Ulrich Blank
  • Nicolas Charles
  • Marc Benhamou
چکیده

Mast cells are critical actors of hypersensitivity type I (allergic) reactions by the release of vasoactive and proinflammatory mediators following their activation by aggregation of the high-affinity receptor for immunoglobulin E (FcεRI). We have previously identified Phospholipid Scramblase 1 (PLSCR1) as a new molecular intermediate of FcεRI signaling that amplifies degranulation of the rat mast cell line RBL-2H3. Here we characterized primary mast cells from Plscr1-/- mice. The absence of PLSCR1 expression did not impact mast cell differentiation as evidenced by unaltered FcεRI expression, general morphology, amount of histamine stored and expression of FcεRI signal effector molecules. No detectable mast cell deficiency was observed in Plscr1-/- adult mice. In dose-response and time-course experiments, primary cultures of mast cells (bone marrow-derived mast cells and peritoneal cell-derived mast cells) generated from Plscr1-/- mice exhibited a reduced release of β-hexosaminidase upon FcεRI engagement as compared to their wild-type counterparts. In vivo, Plscr1-/- mice were protected in a model of passive systemic anaphylaxis when compared to wild-type mice, which was consistent with an observed decrease in the amounts of histamine released in the serum of Plscr1-/- mice during the reaction. Therefore, PLSCR1 aggravates anaphylactic reactions by increasing FcεRI-dependent mast cell degranulation. PLSCR1 could be a new therapeutic target in allergy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Single-molecule analysis of phospholipid scrambling by TMEM16F

Transmembrane protein 16F (TMEM16F) is a Ca2+-dependent phospholipid scramblase that translocates phospholipids bidirectionally between the leaflets of the plasma membrane. Phospholipid scrambling of TMEM16F causes exposure of phosphatidylserine in activated platelets to induce blood clotting and in differentiated osteoblasts to promote bone mineralization. Despite the importance of TMEM16F-med...

متن کامل

Regulation of phospholipid scramblase activity during apoptosis and cell activation by protein kinase Cdelta.

Phospholipid scramblase induces nonspecific bidirectional movement of phospholipids across the membrane during cell activation and has been proposed to mediate the appearance of phosphatidylserine (PS) in the plasma membrane outer leaflet during apoptosis, a cell surface change that is critical for apoptotic cell removal. We report here that protein kinase C (PKC) delta plays an important role ...

متن کامل

Specific phospholipid scramblases are involved in exposure of phosphatidylserine, an “eat-me” signal for phagocytes, on degenerating axons

Axonal degeneration is a key pathological feature of several neurological disorders. Emerging evidence has suggested a pathological connection between axonal degeneration and autophagy, a lysosomal degradation pathway. We recently reported that GSK3B-mediated phosphorylation of MCL1 regulates axonal autophagy to promote axonal degeneration. GSK3B-MCL1 pathway affects ATP production locally in d...

متن کامل

An Unrecognized Function of Cholesterol: Regulating the Mechanism Controlling Membrane Phospholipid Asymmetry.

An asymmetric distribution of phospholipids in the membrane bilayer is inseparable from physiological functions, including shape preservation and survival of erythrocytes, and by implication other cells. Aminophospholipids, notably phosphatidylserine (PS), are confined to the inner leaflet of the erythrocyte membrane lipid bilayer by the ATP-dependent flippase enzyme, ATP11C, counteracting the ...

متن کامل

Regulation of the Tyrosine Phosphorylation of Phospholipid Scramblase 1 in Mast Cells That Are Stimulated through the High-Affinity IgE Receptor

Engagement of high-affinity immunoglobulin E receptors (FcεRI) activates two signaling pathways in mast cells. The Lyn pathway leads to recruitment of Syk and to calcium mobilization whereas the Fyn pathway leads to phosphatidylinositol 3-kinase recruitment. Mapping the connections between both pathways remains an important task to be completed. We previously reported that Phospholipid Scrambla...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017